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DYNAMIC CHARACTERISTICS OF PULSATING
TURBULENT FLOW OF COMPRESSIBLE GAS IN A
CHANNEL

E. P. Valueva UDC 531/534

A model of turbulent transfer that allows for the effect of flow-rate oscillations on the turbulent stress is used
to investigate pulsating turbulent flow of a compressible gas in a narrow channel. An algorithm for solving
numerically the system of equations that describes this process by the finite-difference method with the use
of an implicit iteration scheme is proposed. The effect of operating parameters on the amplitude-frequency
characteristic is considered.

Introduction. In construction of mathematical models of different pneumohydraulic systems that involve
portions of pipelines with a moving compressible fluid as elements there arises the need for a detailed description
of the processes of dynamics [l ]. Thus, when the transfer functions of the channel, for example, the ratio of
pressure (or flow-rate) oscillations at the inlet to the channel to these oscillations at the outlet are calculated, it is
important to correctly allow for friction (the tangential stress) on the wall, which is determining both at low
frequencies and especially at high frequencies when the amplitude of tangential-stress oscillations increases. The
tangential stress on the wall for turbulent flow is found by solution of a system of the equations of fluid dynamics
(the Reynolds and continuity equations) and the closing equations for Reynolds stresses.

In [2-4], consideration is given to the propagation of pressure waves in a channel for the case of the
oscillations of a weakly compressible dropping liquid and adiabatic oscillations of a compressible gas. This process
is described by a system of one-dimensional (averaged over the cross section of the channel) equations of motion
and continuity with given boundary conditions for the pressure (the flow rate) at the inlet to and the outlet from
the channel. It is shown in what cases pressure (flow-rate) oscillations can be represented as the sum of two
fongitudinal waves that propagate in opposite directions with an attenuation factor and phase velocity. The latter
quantities are determined by the relative amplitude and the phase of the oscillation of the tangential stress on the
wall, which is found by numerical (finite-difference) solution of the equation of motion within an approximation of
a boundary layer or a narrow channel (it is shown, for which operating parameters of oscillating flow this
approximation can be used). The turbulent stress involved in the equation of motion was found using a model of
turbulent transfer that allows for the effect of unsteadiness. The validity of the model was confirmed by comparison
of the results of calculating with the available experimental data for different types of unsteadiness both for an
incompressible fluid and a compressible fluid {2-6]. The use of a quasistationary turbulence model leads to poorer
worse agreement between the results of the calculation and experiment and in a number of cases makes it impossible
to describe the effects observed in the experiments.

However, the assumptions that make it possible to directly relate the quantities characterizing the process
of wave propagation 1o the friction on the wall are frequently not satisfied (for example, for large amplitudes of
oscillations, when the equations cannot be solved in a linear approximation). To describe the indicated process, in
this work we propose a model that involves the equation of motion, closing equations for turbulent transfer under
unsteady-state conditions, and the equations of motion and continuity averaged over the cross section of the tube.
We propose an algorithm for simultaneous numerical solution of this system by the finite-difference method using
a stable implicit iteration scheme. Dynamic characteristics of the pipeline for adiabatic oscillations of the gas with
large amplitudes are used as an example; the difference from the case of oscillations with small amplitudes is shown.
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The procedure of numerical modeling proposed can also be used when gas oscillations cannot be assumed
1o be adiabatic, for example, for problems of heat transfer in a pulsating flow of a compressible gas. In this case,
it is necessary to additionally include the energy equation in the system of equations considered.

Formulation of the Problems. Let us write the equation of liquid motion in a circular tube in a boundary-
layer approximation, disregarding convective terms (as shown in {2] this can be done for flows with Mach numbers
M<< D
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To close Eq. (1), we must determine the turbulent tangential stress. For this purpose, we used a developed
model of turbulent transfer based on relaxation equations for the turbulent stress and viscosity:
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are the relaxation constants. The procedure for calculating turbulent transfer under unsteady-state conditions are
described in [J, 6] in detail.

Equation (1) is solved with the following boundary and initial conditions. When R =1, W, = 0; when R =.
0, oW,/0R =0, and when ¢, = 0, the initial velocity profile W, = W(;(R) is prescribed. Since consideration is given
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where eeq = 121 |5 Teq = pe,E_-)£ are the equilibrium values of the corresponding quantities; a, = 6.2 and a; = 2.2

1o a solution that is periodic over time, the form of the initial velocity profile has an effect only on the number of
periods in which the solution is established (see below).

A solution of Eq. (1) is found in each cross section of the tube X from thc known pressure gradient
dP/9X = f(X) and dimensionless density pgg = f(X). We note that for adiabatic oscillations of the gas, whose
parameters are described by the equation of state of an ideal gas (it is precisely this case that is considered in the
present work), pgg = (P/ Po)l/y'

Thus, to solve Eq. (1), we must know the pressure distribution P(X). It can be found by solution of the
system of equations of motion and continuity averaged over the cross section of the tube:
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where U = 2f pwyRdR/uq is the dimensionless flow rate of the liquid (the average mass velocity); F, =
0

2

- (QK) is the friction on the wall, a(z)o = (P/Po)l"]/y.
R=1
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To solve Egs. (4) and (5), we must prescribe P and U at the inlet for X = 0 and the outlet for X = X,
from the channel. The function F, is found by solution of Eq. (1). :
Therefore, the nonlinear equations (1), (4), and (5) should be solved simultancously. The solution depends
on the following operating parameters: the Stokes s and Reynolds Re numbers, the dimensionless pressure at the
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inlet Py, the coefficient y, the relative amplitude of pressure or flow-rate oscillations prescribed at either end of the
tube, the form of the boundary conditions at the ends of the tube, and the tube length Xy,

Method of Solution. For the approximation of Eqs. (4) and (5), use was made of an impicit scheme of the
first order in £, that is symmetric in X and of the second order in X:
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Here f,, = F,/U, D= 9dP/3X ; At = Ax are the 1, and X steps; n is the number of the 1, layer; { is the number of
the X point.

System (6) for U?H , supplemented by finite difference equations that approximate the boundary conditions
for X =0 and X = X, on each n+1 time layer, is solved by the running method. The running is stable and monotonic
when f,, > 0.

Next, P?:II/Z and D?H are found by (7) and (8). Since the coefficient (a(z)o)?fllfz in Egs. (6) and (7) depends
on P?Ill/z it is approriate to use iterations. In the first iteration, (tzg())?++ 11/2 is taken from the previous n layer. On
the initial time layer, distributions U(X) and P(X) are prescribed. The number of periods in which a solution that
.is periodic in time is established depends on how similar these distributions arc to the solution sought.

The function (fw)l'.’H, which is found by solution of Eq. (1), enters into the coefficient b; of Eq. (6). To
solve (1), we use a stable implicit scheme of the first order in £, and of the second order in R. On each n+1 time
layer, the system of finite-difference equations for (W,f);“Ll (j is the number of the point in R) is solved by the
running method. The equations that determine the turbulent stress 7, are integrated using an implicit scheme of
the first order in t,. Since the equilibrium values of (Seq)7:11/2 involved in approximation (1) (indirectly, in terms
of (2) and (3)) depend on the sought function (W,()J'-l+l we use iterations.

The coefficients pgg and dP/3X in Eq. (1) on each time layer are determined by a solution of the system
of one-dimensional equations of P(X) and U(X) obtained earlier. As the calculations showed, to satisfy the balance
relations more accurately, it is appropriate to find the pressure gradient from the known value of U(X) using the
method of splitting.

We note that when the system of one-dimensional equations is solved thc function f is taken from the
previous n layer and then, on solution of Eq. (1), it should be refined. However this procedure would lead to a
substantial increase in the volume of computations and was not performed in the present work. The fact that
(fw);’ rather than (fw)?"L1 is involved in Egs. (6) has no effect on the stability and the order of approximation of
the schemes, though it can lead to an increase in the error of solution. With the aim of decreasing this error we
used linearization of the source in Eq. (4): Fy = f,,U. In many cases, for example, in the laminar regime of flow
and in the turbulent regime in the region of high frequencies, £, ceases to depend on time for oscillations with large
amplitudes.

It should be noted that by employing a two-layer scheme that is symmetric in time for solution of the
one-dimensional equations, we can bring the order of approximation up to the second order. In the present work,
this is not performed, since Eq. (1) is solved using a scheme of the first order of approximation. When a two-layer
symmetric scheme of the second order is applied to this equation in many cases the iterations do not converge, as
calculations have shown.
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Fig. 1. Variation in pressure (a) and flow rate (b) along tube in different time
phases: D 1,=0; 2) n/2; 3 ; 4) 3n/2 (Ap=0.1, Xcp =2.97/2); D) solutions
of acoustic equation; /) solution for gas, y = 1.4, Pg = 1, Rc = '105; L=
1073,

Results of Calculation. A solution is sought for the following boundary conditions at the inlet to and at the
outlet from the channel: when X = 0 the pressure oscillations are prescribed in the form of the function P =
Po(1 + Apcos 1,,), where Ap is the relative amplitude of oscillations; when X = X, the channel is closed: U = 1.

A feature of the process of wave propagation in channels is the presence of resonance regimes, in which,
for certain dimensionless channel lengths X, (divisible by /2 under these boundary conditions), we observe an
increase in the amplitude of the oscillations of the pressure with X = kz/2 and of the flow rate with X = (k — Dux;
k=1, 2, ...In the limiting case of acoustic oscillations of a nonviscous fluid, the amplitude at the indicated points
increases to infinity.

Figure 1 shows the calculated distributions of the pressure and the flow rate along the tube length for one
of the regimes in the near-resonance region. As compared to the results of solving the acoustic equations, the shape
of the curves is distorted substantially, the amplitude of oscillations decreases, a pronounced decrease in the
pressure along the length is observed, and an X-dependent shift of the phase of oscillations relative to the phase
of the pressure at the inlet appears.

As can be seen from the figures, when the above finite-difference scheme is applied to solution of the
acoustic equations, there is an error due to the scheme viscosity. The error can be reduced by decreasing the step
At or by switching to the scheme of the second order of accuracy in ¢,,. However, in calculating the oscillations of
a viscous fluid the role of the scheme viscosity becomes insignificant. Thus, the results of the calculation of transfer
functions for the limiting case of small amplitudes of oscillations according to the above scheme coincide (with an
error of several percent) with the results obtained in [14], where use was made of the closc relationship between
the transfer functions and the relative amplitude and the phase of oscillations of the tangential stress on the wall.
From the results indicated above, we determined the optimum parameters of the scheme: the number of splittings
per oscillation period and the length of a longitudinal wave was 720 and along the radius (with logarithmic bunching
near the wall) it was 100. It took 3 10 16 periods (depending on operating parameters) to establish a flow that was
periodic in time.

In [4], the amplitude frequency characteristics — the ratio of the amplitudes of pressure oscillations at the
outlet and the inlet A,; as a function of X, — were calculated for the oscillations of a weakly compressible dropping
liquid with small amplitudes. The results obtained are in agreement with the results of experiment of [1]. The
indicated dependences have resonance character with pronounced maxima at X, = kn/2. The magnitude of the
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Fig. 2. Amplitude frequency characteristic in the vicinity of the first resonance
harmonic (L = 1072 1) for a liquid with small amplitudes of oscillations, Re
= 104; 2 and 3) for a gas, y = 1.4, Pp = 10, and A, = 0.2, 2) Re = 104; 3
2.25-10%,

Fig. 3. Effect of operating parameters on the resonance amplitude of
oscillations of the pressure at the outlet (a) L = 10—3; b) 10~ I and IID
fora gas (y =1.4: 1) A, =0.04 and Pp = 1; 2) 0.04 and 5; 3) 0.2 and 5; 4)
0.2 and 10); II) for a liquid A, = 0.01); 11D results of calculation by
quasistationary turbulence model; /V) limiting values for high-frequency
region.

maximum depends on the number of the resonance harmonic k and on the Reynolds number and the reduced
length of the tube L = xp ,u/poaor(z)), L=Xuwn/ s%. The same characters of the dependences is also retained for
adiabatic oscillations of the gas (see Fig. 2), however, in this case, the resonance amplitude of the oscillations
Apy is noticeably lower. Furthermore, a decrease in the resonance value of X as compared to 7z/2 is observed.
Indeed, with large amplitudes the oscillations are nonlinear and higher harmonics both in time and in length occur.
In this case, we used the average amplitude calculated from thc arithmetic mean of the maximum and minimum
deviations from the period-averaged pressure at the outlet as Ap,. It should be noted that we were unable to compare
the results obtained with experimental data for the gas, since such data are unknown to the author.

The effect of different operating parameters on A;'p for the first resonance harmonic is shown in Fig. 3. An
increase in the amplitude of oscillations A, and the average pressure Py at the inlet leads to a decrease in App. For
small Re and L, the results of the calculation depend substantially on the turbulence model used. In the high-
frequency region (large Stokes numbers s), a transition to the regime of frozen turbulence is realized [4, 6], in
which the characteristics of the oscillating flow obey the regularities of laminar flow. The figure shows the limiting
values of Ag'p for this high-frequency regime, which depend only on L (and on the number of the resonance
harmonic) with small amplitudes of oscillations. In using the quasistationary turbulence model (without relaxation
equations for the turbulent stress and viscosity 7y = 7¢q and &, = e.), the transition to the regime of frozen
turbulence is delayed. The values of Ag'p turn out to be similar to the values for thc region of quasistationary
turbulence rather than to the high-frequency limit {4 ].

Conclusion. The possibility of applying the finite difference method to solution of a system of equations
that describes the turbulent pulsating flow of a compressible gas in a narrow confined channel when the process of
propagation of pressure and flow-rate waves is effected substantially by the friction on the wall is shown. A solution
is obtained for cylindrical geometry, but the method is easily extended to the case of flow in a plane channel; the
basic results will not change fundamentally.
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The calculations of the amplitude frequency characteristic performed in the near-resonance region
confirmed that the nonlinearity of oscillations leads to a decrease in the amplitudes of the oscillations along the
entire length of the channel.

The use of relaxation equations that allow for the effect of flow-rate pulsations on the turbulent stress is
fundamental in describing turbulent transfer. When the quasistationary turbulence model (without relaxation
equations) is used for small Reynolds numbers in the region of high frequencies (large Stokes numbers), the
amplitudes of oscillations turn out to be understated.

NOTATION

t, time; w, angular frequency of oscillations; x and r, axial and radial coordinates; wy, axial velocity; p,
pressure; p, density; x4, dynamic viscosity; a, velocity of sound; y, adiabatic exponent; ro, radius of tube; uo,
time-average flow rate of liquid (average mass velocity); po and agp, density and velocity of sound averaged over
the period of oscillations in the initial cross section of the tube (x = 0); £, = tw; R =r/rg; X = xw/ag;, Wy =
wy/ wo; wo = up/po; P =p/{upap); peo = p/po; agy = a/ag; Py, dimensionless period-average pressure in the initial
cross section of the tube; s = rgVwpp/u , Stokes number; Re = 2uprg/u, Reynolds number; 7, and ¢, turbulent
stress and viscosity; f1, time scale of turbulence; /, geometric scale of turbulence (mixing length).
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