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A model of turbulent transfer that allows for the effect of flow-rate oscillations on the turbulent stress is used 

to investigate pulsating turbulent flow of a compressible gas in a narrow channel An algorithm for solving 

numerically the system of equations that describes this process by the finite-difference method with the use 

of an implicit iteration scheme is proposed. The effect of operating parameters on the amplitude-frequency 

characteristic is considered. 

Introduction. In construction of mathematical models of different pneumohydraulic systems that involve 

portions of pipelines with a moving compressible fluid as elements there arises the need for a detailed description 

of the processes of dynamics [1 ]. Thus, when the transfer functions of the channel, for example, the ratio of 

pressure (or flow-rate) oscillations at the inlet to the channel to these oscillations at the outlet are calculated, it is 

important to correctly allow for friction (the tangential stress) on the wall, which is determining both at low 

frequencies and especially at high frequencies when the amplitude of tangential-stress oscillations increases. The 

tangential stress on the wall for turbulent flow is found by solution of a system of the equations of fluid dynamics 

(the Reynolds and continuity equations) and the closing equations for Reynolds stresses. 

In [2-4], consideration is given to the propagation of pressure waves in a channel for the case of the 

oscillations of a weakly compressible dropping liquid and adiabatic oscillations of a compressible gas. This process 

is described by a system of one-dimensional (averaged over the cross section of the channel) equations of motion 

and continuity with given boundary conditions for the pressure (the flow rate) at the inlet to and the outlet from 

the channel. It is shown in what cases pressure (flow-rate) oscillations can be represented as the sum of two 

longitudinal waves that propagate in opposite directions with an attenuation factor and phase velocity. The latter 

quantities are determined by the relative amplitude and the phase of the oscillation of the tangential stress on the 

wall, which is found by numerical (finite-difference) solution of the equation of motion within an approximation of 

a boundary layer or a narrow channel (it is shown, for which operating parameters of oscillating flow this 

approximation can be used). The turbulent stress involved in the equation of motion was found using a model of 

turbulent transfer that allows for the effect of unsteadiness. The validity of the model was confirmed by comparison 

of the results of calculating with the available experimental data for different types of unsteadiness both for an 

incompressible fluid and a compressible fluid I2-6 ]. The use of a quasistationary turbulence model leads to poorer 

worse agreement between the results of the calculation and experiment and in a number of cases makes it impossible 

to describe the effects observed in the experiments. 

However, the assumptions that make it possible to directly relate the quantities characterizing the process 

of wave propagation to the friction on the wall are frequently not satisfied (for example, for large amplitudes of 

oscillations, when the equations cannot be solved in a linear approximation). To describe the indicated process, in 

this work we propose a model that involves the equation of motion, closing equations for turbulent transfer under 

unsteady-state conditions, and the equations of motion and continuity averaged over the cross section of the tube. 

We propose an algorithm for simultaneous numerical solution of this system by the finite-difference method using 

a stable implicit iteration scheme. Dynamic characteristics of the pipeline for adiabatic oscillations of the gas with 

large amplitudes are used as an example; the difference from the case of oscillations with small amplitudes is shown. 
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The  p r o c e d u r e  of numerical  modeling proposed can also be used when gas oscillations cannot  be assumed 

to be adiabat ic ,  for  example ,  for problems of heat  t ransfer  in a pulsat ing flow of a compressible gas. In this case, 

it is necessary  to addi t iona l ly  include the energy  equation in the sys tem of equations considered. 

Fo rmula t ion  o f  the Problems.  Let us write the equation of liquid motion in a circular tube  in a boundary-  

layer  approx imat ion ,  d is regarding convective te rms  (as shown in [2 ] this can be done for flows with Much numbers  

M << I) :  
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To close Eq. (1), we must determine the turbulent tangential stress. For this purpose, we used a developed 

model of turbulent  t ransfer  based on relaxation equations for the turbulent stress and viscosity: 

07! 
a r tT -~ -  = req - r t , (2) 

2 
0e~r t t  2 2 

aetT Ot -- Zeq eeq -- er ' (3) 

= 12 O w  x O w  x 
where eeq [ --0-;- I ; "/eq = Per---~- r are the equilibrium values of the corresponding quantities; ae = 6.2 and ar = 2.2 

are the relaxation constants .  The procedure for calculating turbulent t ransfer  under  unsteady-state conditions are 

described in [5, 6 ] in detail. 

Equation (1) is solved with the following boundary and initial conditions. When R = 1, Wx = 0; when R = 

O, OWx/OR = 0, and  when t~ = 0, the initial velocity profile W x = W~x(R) is prescribed. Since consideration is given 

to a solution that  is periodic over time, the form of the initial velocity profile has an effect only on the number  of 

periods in which the  solution is established (see below). 

A solution of Eq. (1) is found in each cross section of the tube X from the known pressure gradient 

OP/OX = f ( X )  and  dimensionless density P00 = f ( X ) .  We note that for adiabatic oscillations of the gas, whose 

parameters are descr ibed  by the equation of state of an ideal gas (it is precisely this case that is considered in the 

present work), Po0 = ( P / P o )  1/y. 

Thus,  to solve Eq. (1), we must know the pressure distribution P ( X ) .  It can be found by solution of the 

system of equations of motion and continuity averaged over the cross section of the tube: 
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where U = 2 f p w x R d R / u o  is the d imens ionless  flow rate of the liquid (the average mass veloci ty) ;  F w -- 

0 

z(owi is the  friction on the wall, a020 = ( P / P o )  l - ld, 
S 2 OR ) R =  l 

To solve Eqs.  (4) and (5), we must  prescribe P and U at the inlet for X = 0 and the outlet  for X = Xch 

from the channel .  T h e  function Fw is found by solution of Eq. (1). 

The re fo re ,  the  nonlinear  equations (1), (4), and  (5) should be solved simultaneously.  The  solution depends  

on the following ope ra t ing  parameters :  the Stokes s and Reynolds Re numbers ,  the dimensionless pressure  at the 
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inlet PO, the  coefficient y, the relative ampli tude of pressure or flow-rate oscillations prescribed at either end of the 

tube, the  form of the boundary  condit ions at the ends of the tube, and the tube length Xc~. 

Method  of Solution. For  the approximation of Eqs. (4) and (5), use was made of an impicit scheme of the 

first o r d e r  in t,o that is symmetr ic  in X and  of the second order  in X: 

+ +1 +1 i?~+1 + ~ 2 ,n+l ( A t / A x ) 2  
ai U~i;1 - bi U~i + ai "~i-I = - f i ,  a7 = (aoo) i+l /2  (6) 
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n + l  n , 2 , n + l  -un.. +1  + 1  
P i + l / 2  = P i + l / 2  - ( a o 0 ) i + l / 2  ( i+l - U~i ) ( A I / A x )  ; (7) 
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Here fw = F w / U ,  D = OP/OX ; At = Ax are  the to and X steps; n is the number  of the t,o layer; i is the n u m b e r  of 

the X point.  

System (6) for U 7+1, supplemented by finite difference equations that approximate the boundary condi t ions 

for X -- 0 and  X = Xch on each n +  1 time layer ,  is solved by the running method. The running is stable and monotonic  

when fw > 0. 
on+l  Dn+l . 2 .n+l in Eqs. (6) and (7) depends  Next ,  "i+l/2 and are found by (7) and (8). Since the coefficient taoo)i+ 1/2 

p n + l  . 2 . n + l  on i+1/2 it is approriate to use i terations.  In the first iteration, t a 0 0 / i + l / 2  is taken from the previous n layer .  On 

the initial t ime layer, distributions U ( X )  and P ( X )  are prescribed. The  number  of periods in which a solution that  

i s  periodic in time is established depends  on how similar these dis tr ibut ions  are to the solution sought. 

T h e  function (fw) 7+1, which is found by solution of Eq. (1), enters into the coefficient b i of Eq. (6). To 

solve (1),  we use a stable implicit scheme of the first order  in t,o and of the second order  in R. On each n + l  t ime 

the  system of f ini te-difference equations for (Wx); +l (j is the number  of the point in R) is solved by the layer, 

running method.  The equations that de termine the turbulent stress rt are integrated using an implicit scheme of 
. . n + l  the first o rde r  in t,o. Since  the equilibrium values of teeq)y +1/2 involved in approximation (1) (indirectly, in te rms 

of (2) and  (3)) depend on the sought function (Wx)~ +l we use iterations. 

T h e  coefficients P00 and O P / a X  in Eq. (1) on each time layer  are determined by a solution of the sys tem 

of one-dimensional  equations of P ( X )  and  U(X)  obtained earlier. As the calculations showed, to satisfy the balance 

relations more  accurately, it is appropria te  to find the pressure gradient  from the known value of U ( X )  using the 

method of splitting. 

We note that when the system of one-dimensional equations is solved thc function fw is taken from the 

previous n layer  and then, on solution of Eq. (1), it should be refined. However this procedure would lead to a 

substantial  increase in the volume of computations and was not performed in the present work. The  fact tha t  

(fw)n r a the r  than (fw)n+l is involved in Eqs. (6) has no effect on the stability and the order  of approximat ion of 

the schemes,  though it can lead to an increase in the error  of solution. With the aim of decreasing this e r ro r  we 

used l inearizat ion of the source in Eq. (4): Fw = fwU. In many cases, for example, in the laminar regime of flow 

and in the  turbulent regime in the region of high frequencies, fw ceases to depend on time for oscillations with large 

ampli tudes.  
It should be noted that  by employing a two-layer scheme that is symmetric in time for solution of the 

one-dimensional  equations, we can bring the order of approximation up to the second order.  In the present  work,  

this is not  performed, since Eq. (1) is solved using a scheme of the first order  of approximation. When a two- layer  

symmetr ic  scheme of the second order  is applied to this equation in many  cases the iterations do not converge,  as 

calculations have shown. 
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Fig. 1. Variat ion in pressure (a) and flow rate (b) a long tube in different time 

phases:  1) to~ = 0; 2) ~z/2; 3) zl; 4) 3z~/2 (Ap -- 0.1, Xch = 2 .9Jr/2);  I) solutions 

of acoust ic  equation; I/) solution for gas, 7 = 1.4, P0 = 1, Re ='105; L = 
10 -3" 

Results o f  Calculat ion.  A solution is sought for the following boundary  condit ions at the inlet to and at the 

outlet  from the channel:  w h e n  X -- 0 the pressure oscil lations are prescribed in the form of the funct ion  P -- 

P0(1 + Ap cos to),  where  Ap is the relative amplitude of oscillations; w h e n  X = Xch the channel  is c losed:  U = 1. 

A feature of the  process  of wave propagation in channels  is the presence  of resonance regimes ,  in which,  

for certain d imens ionless  channe l  lengths Xch (divisible by Jr/2 under these  boundary condit ions) ,  we  observe an 

increase  in the ampl i tude of the oscillations of the pressure with X = k n / 2  and  of the flow rate with X = (k - 1)~z; 

k -- 1, 2 . . . . .  In the l imiting case  of acoustic oscil lations of a nonviscous fluid,  the amplitude at the indicated points 
increases  to infinity. 

Figure 1 shows  the calculated distributions of the pressure and the f low rate along the tube length  for one 

of the regimes in the near -re sonance  region. As compared to the results of  so lv ing lhe acoustic equat ions ,  the shape 

of the curves is distorted substantial ly,  the amplitude of oscil lations decreases ,  a pronounced decrease  in the 

pressure along the length is observed,  and an X-dependent  shift of the phase  of oscil lations relative to the phase 

of the pressure at the inlet appears.  

As can be seen  from the figures, when the above f ini te-dif ference s cheme  is applied to so lut ion  of the 

acoustic  equations,  there is an error due to the scheme  viscosity.  The  error can be reduced by decreas ing  the step 

At or by switching to the  s c h e m e  of the second order of accuracy in t,o. However ,  in calculating the osci l lat ions of 

a viscous fluid the role of  the s c h e m e  viscosity becomes  insignificant. Thus ,  the  results of the calculat ion of  transfer 

functions for the l imiting case  of small amplitudes of oscil lations according to the above scheme co inc ide  (with an 

error of several percent) with the results obtained in [14 ], where use was  m a d e  of the close re lat ionship between  

the transfer functions and the relative amplitude and the phase of osc i l lat ions  of the tangential s tress  on  the wall. 

From the results indicated above,  we  determined the opt imum parameters  of  the scheme: the n u m b e r  of  splittings 

per oscil lation period and the length of a longitudinal wave was 720 and a long  the radius (with logarithmic bunching 

near the wall) it was 100. It took  3 to 16 periods (depending on operating parameters)  to establish a f low that was 

periodic in time. 

In [4 ], the ampl i tude  frequency characteristics - the ratio of  the ampli tudes  of pressure osc i l lat ions  at the 

outlet  and the inlet App as a funct ion of Xch - were calculated for the osc i l lat ions  of a weakly compress ib le  dropping 

liquid with small ampl i tudes .  T h e  results obtained are in agreement  with  the results of exper iment  of [1 ]. The  

indicated dependences  have resonance  character with pronounced m a x i m a  at Xch = k n / 2 .  The  m a g n i t u d e  of the 
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Fig. 2. Ampl i tude  frequency characterist ic  in the vicinity of the first resonance 

harmonic  (L = 10-2: 1) for a liquid with small amplitudes of oscillations, Re 

= 104; 2 and  3) for a gas, y = 1.4, 1~ = 10, and Ap -- 0.2, 2) Re = 104; 3) 

2 .25.104 . 

Fig. 3. E f fec t  of o p e r a t i n g  p a r a m e t e r s  on the r e s o n a n c e  a m p l i t u d e  of 

oscillations of the pressure at the outlet (a) L = 10-3; b) 10-2):  1 and 111) 
for a gas (y = 1.4: 1) Ap -- 0.04 and  P0 = 1; 2) 0.04 and 5; 3) 0.2 and 5; 4) 

0.2 a n d  10); /1) for a liquid (Ap -- 0.01);  111) resul ts  of calculation by 

quas i s t a t i ona ry  turbulence model;  IV) limiting values for h igh- f requency  

region. 

maximum depends  on the n u m b e r  of  the resonance harmonic  k and on the Reynolds  number  a n d  the reduced 

length of the tube L = XchlU/poaor~), L = Xch/S 2. The  same characters of the dependences  is also re ta ined for 

adiabatic oscillations of the  gas (see Fig. 2), however,  in this case, the resonance ampli tude of the  oscillations 
m App is noticeably lower. Fur thermore ,  a decrease in the resonance value of Xch as compared to n / 2  is observed.  

Indeed,  with large ampl i tudes  the oscillations are nonl inear  and higher harmonics both in time and  in length occur. 

In this case, we used the average  ampli tude calculated from thc arithmetic mean of the m a x i m u m  and  min imum 

deviations f rom the per iod-averaged  pressure at the outlet as App. It should be noted that  we were unab l e  to compare  

the results obta ined with exper imenta l  data for the gas, since such data are unknown to the au thor .  

m for the first resonance harmonic  is shown in Fig. 3. An T h e  effect of d i f ferent  operating parameters  on App 
increase in the ampl i tude  of oscillations Ap and the average pressure P0 at the inlet leads to a dec rea se  in App. For  

small Re and  L, the resul ts  of the calculation depend substantial ly on the turbulence model used.  In the high-  

frequency region (large Stokes numbers s), a transit ion to the regime of frozen turbulence is rea l ized  [4, 6 ], in 

which the characteris t ics  of the oscillating flow obey the regularities of laminar  flow. The  figure shows the limiting 

m for this h igh-f requency regime, which depend only on L (and on the number  of  the  resonance  values of App 
harmonic) with small ampl i tudes  of oscillations. In using the quasistationary turbulence model (without  re laxat ion 

equations for the tu rbu len t  s t ress  and viscosity Tt = req and  er = eeq), the t ransi t ion to the  r eg ime  of frozen 

m turn out to be similar to the values for the region of quas is ta t ionary  turbulence is delayed.  T h e  values of App 
turbulence ra ther  than  to the high-frequency limit [4 ]. 

Conclusion.  T h e  possibil i ty of applying the finite difference method to solution of a s y s t e m  of equations 

that describes the turbulent  pulsating flow of a compressible  gas in a narrow confined channel when  the  process of 

propagation of pressure  and  f low-rate waves is effected substantial ly by the friction on the wall is shown.  A solution 

is obtained for cylindrical  geometry ,  but the method is easily extended to the case of flow in a p lane  channel;  the 

basic results will not change  fundamental ly .  
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T h e  calcula t ions  of the ampl i tude  f requency  charac ter i s t ic  per formed in the  n ea r - r e so n ance  region 

confirmed that the nonl inear i ty  of oscillations leads to a decrease in the amplitudes of the oscillations along the 

entire length of the channel .  

The  use of relaxat ion equations that allow for the effect of flow-rate pulsations on the turbulent  stress is 

fundamental  in describing turbulent  t ransfer .  When the quasis ta t ionary turbulence model (without relaxation 

equations) is used for small Reynolds numbers  in the region of high frequencies (large Stokes numbers) ,  the 

amplitudes of oscillations turn out to be understated.  

N O T A T I O N  

t, time; w, angular  frequency of oscillations; x and r, axial and radial coord{nates; w x, axial velocity; p, 

pressure; p,  density;  p ,  dynamic viscosity; a, velocity of sound; y, adiabatic exponent;  r 0, radius of tube; u0, 

time-average flow rate  of liquid (average mass velocity); P0 and a0, densi ty and velocity of sound averaged over 

the period of oscillations in the initial cross section of the tube (x = 0); t~, = tw; R = r/ro; X = xw/ao;  Wx = 

Wx/Wo; wo = uo/PO; P = p /  (uoao); PO0 = P/PO; aoo = a/ao;  P0, dimensionless period-average pressure in the initial 

cross section of the tube; s = roX/wpo/lu, Stokes number;  Re = 2uoro/p,  Reynolds number;  Tt and eT, turbulent  

stress and viscosity; iT, time scale of turbulence; l, geometric scale of turbulence (mixing length).  
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